Electronics (Mar 2024)

Aero-YOLO: An Efficient Vehicle and Pedestrian Detection Algorithm Based on Unmanned Aerial Imagery

  • Yifan Shao,
  • Zhaoxu Yang,
  • Zhongheng Li,
  • Jun Li

DOI
https://doi.org/10.3390/electronics13071190
Journal volume & issue
Vol. 13, no. 7
p. 1190

Abstract

Read online

The cost-effectiveness, compact size, and inherent flexibility of UAV technology have garnered significant attention. Utilizing sensors, UAVs capture ground-based targets, offering a novel perspective for aerial target detection and data collection. However, traditional UAV aerial image recognition techniques suffer from various drawbacks, including limited payload capacity, resulting in insufficient computing power, low recognition accuracy due to small target sizes in images, and missed detections caused by dense target arrangements. To address these challenges, this study proposes a lightweight UAV image target detection method based on YOLOv8, named Aero-YOLO. The specific approach involves replacing the original Conv module with GSConv and substituting the C2f module with C3 to reduce model parameters, extend the receptive field, and enhance computational efficiency. Furthermore, the introduction of the CoordAtt and shuffle attention mechanisms enhances feature extraction, which is particularly beneficial for detecting small vehicles from a UAV perspective. Lastly, three new parameter specifications for YOLOv8 are proposed to meet the requirements of different application scenarios. Experimental evaluations were conducted on the UAV-ROD and VisDrone2019 datasets. The results demonstrate that the algorithm proposed in this study improves the accuracy and speed of vehicle and pedestrian detection, exhibiting robust performance across various angles, heights, and imaging conditions.

Keywords