Pharmaceutics (Jul 2023)
Race, Ethnicity, and Pharmacogenomic Variation in the United States and the United Kingdom
Abstract
The relevance of race and ethnicity to genetics and medicine has long been a matter of debate. An emerging consensus holds that race and ethnicity are social constructs and thus poor proxies for genetic diversity. The goal of this study was to evaluate the relationship between race, ethnicity, and clinically relevant pharmacogenomic variation in cosmopolitan populations. We studied racially and ethnically diverse cohorts of 65,120 participants from the United States All of Us Research Program (All of Us) and 31,396 participants from the United Kingdom Biobank (UKB). Genome-wide patterns of pharmacogenomic variation—6311 drug response-associated variants for All of Us and 5966 variants for UKB—were analyzed with machine learning classifiers to predict participants’ self-identified race and ethnicity. Pharmacogenomic variation predicts race/ethnicity with averages of 92.1% accuracy for All of Us and 94.3% accuracy for UKB. Group-specific prediction accuracies range from 99.0% for the White group in UKB to 92.9% for the Hispanic group in All of Us. Prediction accuracies are substantially lower for individuals who identified with more than one group in All of Us (16.7%) or as Mixed in UKB (70.7%). There are numerous individual pharmacogenomic variants with large allele frequency differences between race/ethnicity groups in both cohorts. Frequency differences for toxicity-associated variants predict hundreds of adverse drug reactions per 1000 treated participants for minority groups in All of Us. Our results indicate that race and ethnicity can be used to stratify pharmacogenomic risk in the US and UK populations and should not be discounted when making treatment decisions. We resolve the contradiction between the results reported here and the orthodoxy of race and ethnicity as non-genetic, social constructs by emphasizing the distinction between global and local patterns of human genetic diversity, and we stress the current and future limitations of race and ethnicity as proxies for pharmacogenomic variation.
Keywords