PLoS ONE (Jan 2018)

An in-vivo pilot study into the effects of FDG-mNP in cancer in mice.

  • Omer Aras,
  • Gillian Pearce,
  • Adam J Watkins,
  • Fuad Nurili,
  • Emin Ilker Medine,
  • Ozge Kozgus Guldu,
  • Volkan Tekin,
  • Julian Wong,
  • Xianghong Ma,
  • Richard Ting,
  • Perihan Unak,
  • Oguz Akin

DOI
https://doi.org/10.1371/journal.pone.0202482
Journal volume & issue
Vol. 13, no. 8
p. e0202482

Abstract

Read online

PURPOSE:Previously, fluorodeoxy glucose conjugated magnetite nanoparticles (FDG-mNPs) injected into cancer cells in conjunction with the application of magnetic hyperthermia have shown promise in new FDG-mNPs applications. The aim of this study was to determine potential toxic or unwanted effects involving both tumour cells and normal tissue in other organs when FDG-mNPs are administered intravenously or intratumourally in mice. MATERIALS AND METHODS:FDG-mNPs were synthesized. A group of six prostate-tumour bearing mice were injected with 23.42 mg/ml FDG-mNPs (intravenous injection, n = 3; intratumoural injection into the prostate tumour, n = 3). Mice were euthanized and histological sampling of tissue was conducted for the prostate tumour, as well as for lungs, lymph nodes, liver, kidneys, spleen, and brain, at 1 hour (n = 2) and 7 days (n = 4) post-injection. A second group of two normal (non-cancerous) mice received the same injection intravenously into the tail vein and were euthanised at 3 and 6 months post-injection, respectively, to investigate if FDG-mNPs remained in organs at those time points. RESULTS:In prostate-tumour bearing mice, FDG-mNPs concentrated in the prostate tumour, while relatively small amounts were found in the organs of other tissues, particularly the spleen and the liver; FDG-mNP concentrations decreased over time in all tissues. In normal mice, no detrimental effects were found in either mouse at 3 or 6 months. CONCLUSION:Intravenous or intratumoural FDG-mNPs can be safely administered for effective cancer cell destruction. Further research on the clinical utility of FDG-mNPs will be conducted by applying hyperthermia in conjunction with FDG-mNPs in mice.