High-Performance Infrared Detectors Based on Black Phosphorus/Carbon Nanotube Heterojunctions
Yanming Zhang,
Qichao Li,
Xiaowo Ye,
Long Wang,
Zhiyan He,
Teng Zhang,
Kunchan Wang,
Fangyuan Shi,
Jingyun Yang,
Shenghao Jiang,
Xuri Wang,
Changxin Chen
Affiliations
Yanming Zhang
National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Qichao Li
National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Xiaowo Ye
National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Long Wang
National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Zhiyan He
National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Teng Zhang
National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Kunchan Wang
National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Fangyuan Shi
National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Jingyun Yang
National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Shenghao Jiang
National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Xuri Wang
National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Changxin Chen
National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Key Laboratory for Thin Film and Microfabrication of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Infrared detectors have broad application prospects in the fields of detection and communication. Using ideal materials and good device structure is crucial for achieving high-performance infrared detectors. Here, we utilized black phosphorus (BP) and single-walled carbon nanotube (SWCNT) films to construct a vertical van der Waals heterostructure, resulting in high-performance photovoltaic infrared detectors. In the device, a strong built-in electric field was formed in the heterojunction with a favored energy-band matching between the BP and the SWCNT, which caused a good photovoltaic effect. The fabricated devices exhibited a diode-like rectification behavior in the dark, which had a high rectification ratio up to a magnitude of 104 and a low ideal factor of 1.4. Under 1550 nm wavelength illumination, the 2D BP/SWCNT film photodetector demonstrated an open-circuit voltage of 0.34 V, a large external power conversion efficiency (η) of 7.5% and a high specific detectivity (D*) of 3.1 × 109 Jones. This external η was the highest among those for the photovoltaic devices fabricated with the SWCNTs or the heterostructures based on 2D materials and the obtained D* was also higher than those for most of the infrared detectors based on 2D materials or carbon materials. This work showcases the application potential of BP and SWCNTs in the detection field.