Energies (Oct 2021)
Reactivity Model as a Tool to Compare the Combustion Process in Aviation Turbine Engines Powered by Synthetic Fuels
Abstract
The paper aims to verify the thesis that the reactivity model, developed in earlier research, can be used to compare the fuels combustion processes in turbine engines, which is important for predicting the behavior of different alternative fuels in combustion process. Synthetic blending components from alcohol to jet and hydroprocessed esters and fatty acids technologies and their blends with conventional jet fuel were used in tests. The undertaken laboratory tests reveal the differences between the properties of the tested fuels. Bench tests were carried out on a test rig with a miniature turbojet engine, according to authorial methodology. For each blend, on selected points of rotational speed the carbon oxide concentration in the exhaust gases was recorded. The obtained results allowed the formulation of empirical power functions describing relations between carbon oxide concentration and fuel mass flow rate. Based on general assumptions, the reactivity model was adopted to compare the combustion processes of the different fuels in turbine engines. The directions of further research on the development of the proposed model were indicated.
Keywords