Neurobiology of Sleep and Circadian Rhythms (Jan 2019)

Comparison of the macro and microstructure of sleep in a sample of sleep clinic hypersomnia cases

  • Alyssa Cairns,
  • Richard Bogan

Journal volume & issue
Vol. 6
pp. 62 – 69

Abstract

Read online

The purpose of this study was to elucidate the differentiating or grouping EEG characteristics in various hypersomnias (type 1 and type 2 narcolepsy (N-1 and N-2) and idiopathic hypersomnia (IH) compared to an age-matched snoring reference group (SR). Polysomnogram sleep EEG was decomposed into a 4-frequency state model. The IH group had higher sleep efficiency (SE; 92.3% vs. 85.8%; sp < 0.05), lower WASO (IH = 35.4 vs. N-1 = 65.5 min; p < 0.01), but similar (i.e. high) arousal indices as N-1 (~33/h). N-1 and N-2 had earlier REM latency than IH and SR (N-1 = 64.8, N-2 = 76.3 vs. IH/SR = 118 min, p < 0.05). N-1 and N-2 showed an increase in MF1 segments (characteristic of stage 1 and REM) across the night as well as distinct oscillations every 2 h, but MF1 segment timing was advanced by 30 min compared to the SR group (p < 0.05). This suggests the presence of circadian organization to sleep that is timed earlier or of increased pressure and/or lability. MF1 demonstrated a mixed phenotype in IH, with an early 1st oscillation (like N-1 and N-2), 2nd oscillation that overlapped with the SR group, and a surge prior to wake (higher than all groups). This phenotype may reflect a heterogeneous group of individuals, with some having more narcolepsy-like characteristics (i.e. REM) than others. LF domain (delta surrogate) was enhanced in IH and N-1 and more rapidly dissipated compared to N-2 and SR (p < 0.05). This suggests an intact homeostatic sleep pattern that is of higher need/reduced efficiency whereas rapid dissipation may be an underlying mechanism for sleep disruption. Keywords: Spectral analysis, Signal processing, Spectrum, MSLT, Sensitivity, SOREMP