Atmosphere (Mar 2025)
Cross-Examination of Reanalysis Datasets on Elevation-Dependent Climate Change in the Third Pole Region
Abstract
The scarcity of in situ observation stations and the unreliability of long-term satellite data necessitate the use of reanalysis datasets to study elevation-dependent climate change (EDCC) in the third pole (TP) region. We analyzed elevation-dependent temperature and precipitation patterns over TP using the ECMWF Atmospheric Reanalysis Fifth Generation (ERA5), a global reanalysis product with coarse resolution, along with three high-resolution regional reanalysis datasets that cover our study domain: Indian Monsoon Data Assimilation and Analysis (IMDAA), High Asia Refined Analysis—Version 2 (HAR-v2), and Tibetan Plateau Regional Reanalysis (TPRR). Comparing the performance of the four reanalysis datasets in capturing EDCC over TP is crucial, as these datasets provide spatially and temporally consistent data at an optimum resolution that greatly aids EDCC research. Our study results reveal the following: (1) A positive elevation-dependent warming trend is observed across all four datasets in winter and autumn, with varying magnitudes of warming across the datasets. (2) All four datasets exhibit positive elevation-dependent wetting trends in all seasons, except autumn. These are primarily driven by pronounced drying trends at lower elevations and relatively minimal changes in precipitation trends at higher elevations. (3) ERA5 and IMDAA exhibit similar results in capturing elevation-dependent climate change, whereas the TPRR dataset reveals more extreme and unique features in temperature trends compared to the other three datasets. HAR-v2 shows smaller variations in temperature and precipitation trends across different elevations and seasons, in contrast to the other three datasets. While all reanalysis datasets indicate EDCC in the TP, their varying degrees of seasonal and spatial differences underscore the need for a careful evaluation before using them as reference data. Comparison of reanalysis datasets with available observational records, such as in situ measurements and satellite data, over overlapping spatial and temporal domains is essential to assess their quality. This evaluation can help identify the most suitable reanalysis dataset, or combination of datasets, to serve as reliable a reference even in regions or periods without observational data.
Keywords