Frontiers in Endocrinology (Aug 2018)

Nesfatin-1 Regulates Feeding, Glucosensing and Lipid Metabolism in Rainbow Trout

  • Ayelén M. Blanco,
  • Ayelén M. Blanco,
  • Cristina Velasco,
  • Cristina Velasco,
  • Juan I. Bertucci,
  • Juan I. Bertucci,
  • José L. Soengas,
  • Suraj Unniappan

DOI
https://doi.org/10.3389/fendo.2018.00484
Journal volume & issue
Vol. 9

Abstract

Read online

Nesfatin-1 is an 82 amino acid peptide that has been involved in a wide variety of physiological functions in both mammals and fish. This study aimed to elucidate the role of nesfatin-1 on rainbow trout food intake, and its putative effects on glucose and fatty acid sensing systems. Intracerebroventricular administration of 25 ng/g nesfatin-1 resulted in a significant inhibition of appetite, likely mediated by the activation of central POMC and CART. Nesfatin-1 stimulated the glucosensing machinery (changes in sglt1, g6pase, gsase, and gnat3 mRNA expression) in the hindbrain and hypothalamus. Central fatty acid sensing mechanisms were unaltered by nesfatin-1, but this peptide altered the expression of mRNAs encoding factors regulating lipid metabolism (fat/cd36, acly, mcd, fas, lpl, pparα, and pparγ), suggesting that nesfatin-1 promotes lipid accumulation in neurons. In the liver, intracerebroventricular nesfatin-1 treatment resulted in decreased capacity for glucose use and lipogenesis, and increased the potential of fatty acid oxidation. Altogether, the present results demonstrate that nesfatin-1 is involved in the homeostatic regulation of food intake and metabolism in fish.

Keywords