Applied Sciences (Jan 2024)

Fully Reconfigurable Photonic Filter for Flexible Payloads

  • Annarita di Toma,
  • Giuseppe Brunetti,
  • Nabarun Saha,
  • Caterina Ciminelli

DOI
https://doi.org/10.3390/app14020488
Journal volume & issue
Vol. 14, no. 2
p. 488

Abstract

Read online

Reconfigurable photonic filters represent cutting-edge technology that enhances the capabilities of space payloads. These advanced devices harness the unique properties of light to deliver superior performance in signal processing, filtering, and frequency selection. They offer broad filtering capabilities, allowing for the selection of specific frequency ranges while significantly reducing Size, Weight, and Power (SWaP). In scenarios where satellite communication channels are crowded with various signals sharing the same bandwidth, reconfigurable photonic filters enable efficient spectrum management and interference mitigation, ensuring reliable signal transmission. Furthermore, reconfigurable photonic filters demonstrate their ability to adapt to the dynamic space environment, withstanding extreme temperatures, radiation exposure, and mechanical stress while maintaining stable and reliable performance. Leveraging the inherent speed of light, these filters enable high-speed signal processing operations, paving the way to various space payload applications, such as agile frequency channelization. This capability allows for the simultaneous processing and analysis of different frequency bands. In this theoretical study, we introduce a fully reconfigurable filter comprising two decoupled ring resonators, each with the same radius. Each resonator can be independently thermally tuned to achieve reconfigurability in both central frequency and bandwidth. The precise reconfiguration of both central frequency and bandwidth is achieved by using the thermo-optic effect along the whole ring resonator path. A stopband rejection of 45 dB, with a reconfigurable bandwidth and central frequency of 20 MHz and 180 MHz, respectively, has been numerically achieved, with a maximum electrical power of 11.50 mW and a reconfiguration time of 9.20 µs, by using the scattering matrix approach, where the elements have been calculated through Finite Element Method-based and Beam Propagation Method-based simulations. This performance makes the proposed device suitable as key building block of RF optical filters, useful in the next-generation telecommunication payload domain.

Keywords