Neurobiology of Disease (Nov 2009)

Periodic fasting alters neuronal excitability in rat neocortical and hippocampal tissues

  • Maryam Khaleghi Ghadiri,
  • Yasemin Tutam,
  • Hansdetlef Wassmann,
  • Erwin-Josef Speckmann,
  • Ali Gorji

Journal volume & issue
Vol. 36, no. 2
pp. 384 – 392

Abstract

Read online

Dietary restriction has been shown to be associated with marked changes in brain function. Periodic fasting was suggested to be beneficial in reducing both the incidence and severity of some neurological disorders. The aim of this investigation was to study the effect of periodic fasting on the neuronal network excitability in the neocortex and hippocampus and its possible influence on the brain under pathological conditions. Direct current (DC) recordings in the somatosensory neocortex of fasting rats (15 h water and food deprivation per day) during drinking revealed a negative potential shift. Using voltage sensitive dye imaging and tetanus-induced long-term potentiation (LTP) in ex vivo/in vitro experiments, neuronal network activities as well as synaptic efficacy were investigated in rat neocortical and hippocampal slices after 4 weeks of periodic fasting. Stimulus-induced patterns of bioelectric activity showed enhanced neuronal network excitability in the neocortex and decreased bioelectric activity in the hippocampus. LTP was significantly increased in neocortical slices and inhibited in hippocampal tissues. Both hippocampal and neocortical tissues exhibited a higher tolerance to hypoxic stress but not to 0-Mg2+-eliciting epileptiform field potentials. Neocortical slices also exhibited a higher threshold for the initiation of spreading depression. These experiments indicate that repetitive DC potential shifts occurring in fasting rats change the pattern of bioelectrical activities in cortical and subcortical regions. Through these alterations, the neocortex and hippocampus may become tuned for the efficient regulation of consummatory behaviour.

Keywords