Atmosphere (Aug 2020)

Trends in Atmospheric Humidity and Temperature above Dome C, Antarctica Evaluated from Observations and Reanalyses

  • Philippe Ricaud,
  • Paolo Grigioni,
  • Romain Roehrig,
  • Pierre Durand,
  • Dana E. Veron

DOI
https://doi.org/10.3390/atmos11080836
Journal volume & issue
Vol. 11, no. 8
p. 836

Abstract

Read online

The time evolution of humidity and temperature above Dome C (Antarctica) has been investigated by considering data from (1) meteorological radiosondes (2005–2017), (2) the microwave radiometer HAMSTRAD (2012–2017), (3) four modern meteorological reanalyses (1980–2017) and (4) the southern annular mode (SAM) index (1980–2017). From these observations (2005–2017), a significant moistening trend (0.08 ± 0.06 kg m−2 dec−1) is associated with a significant warming trend (1.08 ± 0.55 K dec−1) in summer. Conversely, a significant drying trend of −0.04 ± 0.03 kg m−2 dec−1 (−0.05 ± 0.03 kg m−2 dec−1) is associated with a significant cooling trend of −2.4 ± 1.2 K dec−1 (−5.1 ± 2.0 K dec−1) in autumn (winter), with no significant trends in the spring. We demonstrate that 1) the trends identified in the radiosondes (2005–2017) are also present in the reanalyses and 2) the multidecadal variability of integrated water vapor and near-surface temperature (1980–2017) is strongly influenced by variability in the SAM index for all seasons but spring. Our study suggests that the decadal trends observed in humidity and near-surface temperature at Dome C (2005–2017) reflect the multidecadal variability of the atmosphere, and are not indicative of long-term trends that may be related to global climate change.

Keywords