Shock and Vibration (Jan 2020)
Effectiveness of Friction Dampers in Seismic and Wind Response Control of Connected Adjacent Steel Buildings
Abstract
Effectiveness of friction dampers (FDs) is investigated for connected dynamically similar and dissimilar steel buildings under uncorrelated seismic ground motion and wind excitations. The steel buildings involving moment-resisting frame (MRF) and braced frame (BF) are varied from five storeys to twenty storeys, which are connected by different configurations of the FDs. The steel buildings without and with bracing systems are modeled as plane frame structures with inertial masses lumped at each joint node. The FDs are modeled an element having yield force equal to slip load, with force-deformation behavior as elastic-perfectly plastic material. The dynamic responses of the unconnected and connected steel buildings are obtained in terms of top floor displacement and acceleration under the considered ground motion and wind excitations. It is concluded that the FDs help minimizing the gap between two adjacent buildings having utilized the space to connect the buildings. Moreover, the effectiveness of the FDs in terms of response reduction in dynamically dissimilar buildings is more than that in the similar buildings under the considered excitation scenarios. However, the effectiveness of the installed devices varies significantly under the multiple loading scenarios. Finally, the separation gap may be reduced by ∼30%, which would eventually minimize structural pounding as well as utilize the space for effective construction. Hence, important essential guidelines are outlined for structures installed with such passive control devices against such multiple scenario loadings.