Iranian Journal of Basic Medical Sciences (Apr 2016)

Brain-derived neurotrophic and immunologic factors: beneficial effects of riboflavin on motor disability in murine model of multiple sclerosis

  • Mahshid Naghashpour,
  • Reza Amani,
  • Alireza Sarkaki,
  • Ata Ghadiri,
  • Alireza Samarbafzadeh,
  • Sima Jafarirad,
  • Amal Saki Malehi

Journal volume & issue
Vol. 19, no. 4
pp. 439 – 448

Abstract

Read online

Objective(s): In the present study, C57BL/6 female mice (n=56) were used to explore the neuroprotective effects of riboflavin in motor disability of experimental autoimmune encephalomyelitis (EAE) as a model of multiple sclerosis. Materials and Methods: The animals were assigned into 7 groups: sham-operated 1 (SO1), healthy mice receiving PBS (phosphate buffer saline); sham-operated 2 (SO2), healthy mice receiving PBS and riboflavin; sham treatment 1 (ST1), EAE mice receiving water; sham treatment 2 (ST2), EAE mice receiving sodium acetate buffer; treatment 1 (T1), EAE mice receiving interferon beta-1a (INFβ-1a); treatment 2 (T2), EAE mice receiving riboflavin; treatment 3 (T3), EAE mice receiving INFβ-1a and riboflavin. After EAE induction, scoring was performed based on clinical signs. Upon detecting score 0.5, riboflavin at 10 mg/kg of body weight and/or INFβ-1a at 150 IU/g of body weight administration was started for two weeks. The brain and spinal cord levels of brain-derived neurotrophic factor (BDNF), interleukin-6 (IL-6), and interleukin-17A (IL-17A) were studied using real-time PCR and ELISA methods. Results: BDNF expression and protein levels were increased in the brain and spinal cord of the T3 group compared with the other groups (P

Keywords