Molecules (Nov 2023)

Tetrahydrocurcumin Derivatives Enhanced the Anti-Inflammatory Activity of Curcumin: Synthesis, Biological Evaluation, and Structure–Activity Relationship Analysis

  • Yisett González,
  • Randy Mojica-Flores,
  • Dilan Moreno-Labrador,
  • Marisín Pecchio,
  • K. S. Jagannatha Rao,
  • Maicol Ahumedo-Monterrosa,
  • Patricia L. Fernández,
  • Oleg V. Larionov,
  • Johant Lakey-Beitia

DOI
https://doi.org/10.3390/molecules28237787
Journal volume & issue
Vol. 28, no. 23
p. 7787

Abstract

Read online

Tetrahydrocurcumin, the most abundant curcumin transformation product in biological systems, can potentially be a new alternative therapeutic agent with improved anti-inflammatory activity and higher bioavailability than curcumin. In this article, we describe the synthesis and evaluation of the anti-inflammatory activities of tetrahydrocurcumin derivatives. Eleven tetrahydrocurcumin derivatives were synthesized via Steglich esterification on both sides of the phenolic rings of tetrahydrocurcumin with the aim of improving the anti-inflammatory activity of this compound. We showed that tetrahydrocurcumin (2) inhibited TNF-α and IL-6 production but not PGE2 production. Three tetrahydrocurcumin derivatives inhibited TNF-α production, five inhibited IL-6 production, and three inhibited PGE2 production. The structure–activity relationship analysis suggested that two factors could contribute to the biological activities of these compounds: the presence or absence of planarity and their structural differences. Among the tetrahydrocurcumin derivatives, cyclic compound 13 was the most active in terms of TNF-α production, showing even better activity than tetrahydrocurcumin. Acyclic compound 11 was the most effective in terms of IL-6 production and retained the same effect as tetrahydrocurcumin. Moreover, acyclic compound 12 was the most active in terms of PGE2 production, displaying better inhibition than tetrahydrocurcumin. A 3D-QSAR analysis suggested that the anti-inflammatory activities of tetrahydrocurcumin derivatives could be increased by adding bulky groups at the ends of compounds 2, 11, and 12.

Keywords