Cerebrovascular Diseases Extra (Oct 2024)

siLOXL2 Inhibits Endothelial Inflammatory Response and EndMT Induced by ox-LDL

  • Jing Ma,
  • Jia Ling,
  • Rui Tong,
  • Jiefen Guo,
  • Zhongsheng Zhu

DOI
https://doi.org/10.1159/000541906
Journal volume & issue
Vol. 14, no. 1
pp. 165 – 176

Abstract

Read online

Introduction: Our research aimed to investigate the potential role and mechanism of lysyl oxidase (LOX)-like 2 (LOXL2) in atherosclerosis (AS) by using the human umbilical vein endothelial cells (HUVECs) stimulated by oxidized low-density lipoprotein (ox-LDL). Methods: HUVECs were treated with ox-LDL at different concentrations (0, 10, 25, 50, and 100 μg/mL) and incubated for 24 h. The transfection efficacy of siLOXL2 was investigated by Western blot and real-time quantitative polymerase chain reaction (RT-qPCR). Cell migration, intracellular ROS measurement, oxidative stress, enzyme-linked immunosorbent assay, and adhesion assays were carried out to examine the ox-LDL-induced HUVECs injury. RT-qPCR and Western blot were used to determine gene and protein expression levels. Results: LOXL2 protein expression increased in ox-LDL-induced endothelial cells (ECs). ox-LDL + siLOXL2 significantly inhibited the migration ability of HUVECs and reduced the expression of vascular endothelial growth factor A (VEGFA) and matrix metalloproteinase 9 gene expressions (all, p < 0.05). The ox-LDL + siLOXL2 significantly reduced intracellular ROS production and inhibited the expression of Malondialdehyde, whereas it markedly enhanced superoxide dismutase and catalase (all, p < 0.05). Supernatant levels of interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) were significantly attenuated by the ox-LDL + siLOXL2 treatment (all, p < 0.05). ox-LDL + siLOXL2 markedly suppressed the expression of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 (all, p < 0.05). ox-LDL + siLOXL2 treatment remarkably reduced the expression of α-smooth muscle actin and vimentin, while increased CD31 and von Willebrand factor gene expression (all, p < 0.05). Conclusion: LOXL2 silencing is protected against ox-LDL-induced EC dysfunction, and the mechanism may be related to the inhibition of the EndMT pathway.

Keywords