Classification and Prediction by Pigment Content in Lettuce (<i>Lactuca sativa</i> L.) Varieties Using Machine Learning and ATR-FTIR Spectroscopy
Renan Falcioni,
Thaise Moriwaki,
Mariana Sversut Gibin,
Alessandra Vollmann,
Mariana Carmona Pattaro,
Marina Ellen Giacomelli,
Francielle Sato,
Marcos Rafael Nanni,
Werner Camargos Antunes
Affiliations
Renan Falcioni
Plant Ecophysiology Laboratory, Graduate Program in Agronomy, Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
Thaise Moriwaki
Plant Ecophysiology Laboratory, Graduate Program in Agronomy, Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
Mariana Sversut Gibin
Optical Spectroscopy and Thermophysical Properties Research Group, Graduate Program in Physics, Department of Physics, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
Alessandra Vollmann
Plant Ecophysiology Laboratory, Graduate Program in Agronomy, Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
Mariana Carmona Pattaro
Plant Ecophysiology Laboratory, Graduate Program in Agronomy, Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
Marina Ellen Giacomelli
Plant Ecophysiology Laboratory, Graduate Program in Agronomy, Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
Francielle Sato
Optical Spectroscopy and Thermophysical Properties Research Group, Graduate Program in Physics, Department of Physics, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
Marcos Rafael Nanni
Plant Ecophysiology Laboratory, Graduate Program in Agronomy, Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
Werner Camargos Antunes
Plant Ecophysiology Laboratory, Graduate Program in Agronomy, Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, Brazil
Green or purple lettuce varieties produce many secondary metabolites, such as chlorophylls, carotenoids, anthocyanins, flavonoids, and phenolic compounds, which is an emergent search in the field of biomolecule research. The main objective of this study was to use multivariate and machine learning algorithms on Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR)-based spectra to classify, predict, and categorize chemometric attributes. The cluster heatmap showed the highest efficiency in grouping similar lettuce varieties based on pigment profiles. The relationship among pigments was more significant than the absolute contents. Other results allow classification based on ATR-FTIR fingerprints of inflections associated with structural and chemical components present in lettuce, obtaining high accuracy and precision (>97%) by using principal component analysis and discriminant analysis (PCA-LDA)-associated linear LDA and SVM machine learning algorithms. In addition, PLSR models were capable of predicting Chla, Chlb, Chla+b, Car, AnC, Flv, and Phe contents, with R2P and RPDP values considered very good (0.81–0.88) for Car, Anc, and Flv and excellent (0.91–0.93) for Phe. According to the RPDP metric, the models were considered excellent (>2.10) for all variables estimated. Thus, this research shows the potential of machine learning solutions for ATR-FTIR spectroscopy analysis to classify, estimate, and characterize the biomolecules associated with secondary metabolites in lettuce.