Heliyon (Jan 2024)
Performance of graphene oxide as a water-repellent coating nanomaterial to extend the service life of concrete structures
Abstract
Surface treatments help to protect the built heritage against damage (environmental, accidental, etc.), reducing repair and restitution costs and increasing the useful life of building materials. The use of nanomaterials is currently the most important field of research in surface treatment technology for the preservation of building materials and, more specifically, to improve their durability and prevent their deterioration, extending their useful life. This paper studies the influence of a graphene oxide (GO) suspension as a surface treatment on the properties of concrete. The results indicate that, at best, surface treatment with GO can decrease both the water absorption and capillary absorption of concrete by about 15 %. The increase in the amount of GO deposited as a surface treatment leads to a further reduction in concrete water absorption. It is shown that, at best, GO coating also reduces water penetration at low and high pressures by approximately 20 % and 60 %, respectively. In addition, scanning electron microscopy analysis shows that GO surface treatment facilitates the hydration process and densifies the concrete microstructure. A simple aqueous suspension of GO is revealed as a tool with a high potential to protect concrete surfaces in a fast and cost-effective way, thanks to the easy application by spraying and the small amount of material needed to obtain great results.