SN Applied Sciences (Mar 2023)

The hypocholesterolemic effect of methanolic extract of Bassia muricata l. on hypercholesterolemic rats

  • Amal S. Al-Obeidyeen,
  • Musa H. Zarga,
  • Shtaywy S. Abdalla

DOI
https://doi.org/10.1007/s42452-023-05320-z
Journal volume & issue
Vol. 5, no. 4
pp. 1 – 11

Abstract

Read online

Abstract Hypercholesterolemia is correlated with cardiovascular diseases. The search for effective alternatives for lipid-lowering drugs is continuous. We investigated the hypocholesterolemic activity of Bassia muricata methanolic extract (BMME) in a model of hyperlipidemia. B. muricata was extracted with methanol. Male rats were randomly divided into six groups: normal control group (G1) was fed normal diet, negative control group (G2) was fed high cholesterol and fat diet (HCFD), positive control group (G3) was fed HCFD and treated with atorvastatin (20 mg/kg), a fourth, fifth and sixth groups (G4, G5, and G6) were fed HCFD and treated with 10, 30 and 100 mg/Kg of BMME, respectively. All rat groups received, for 4 weeks, the appropriate daily dose after initial two weeks of feeding normal diet or HCFD. Body weight, lipid profile, serum glucose, liver enzymes were measured weekly. HCFD caused an increased total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and glucose, decreased triglycerides (TG) and high-density lipoprotein cholesterol (HDL-C), and blunted the normal gain of body weight. BMME doses restored the normal gain of body weight, caused significant decrease in serum TC, LDL-C, and increased HDL-C when compared to G2. 10 mg/kg and 30 mg/kg of BMME failed to induce any change in alkaline phosphatase whereas 100 mg/Kg of BMME caused a significant increase in alanine transaminase. 10 mg/kg and 30 mg/kg of BMME significantly decreased serum glucose whereas 100 mg/kg BMME significantly increased it. BMME had significant hypocholesterolemic effect and 100 mg/kg BMME increased alanine transaminase, TG and glucose in rats. Graphical abstract

Keywords