Remote Sensing (Oct 2024)
Estimating Vertical Distribution of Total Suspended Matter in Coastal Waters Using Remote-Sensing Approaches
Abstract
The vertical distribution of the marine total suspended matter (TSM) concentration significantly influences marine material transport, sedimentation processes, and biogeochemical cycles. Traditional field observations are constrained by limited spatial and temporal coverage, necessitating the use of remote-sensing technology to comprehensively understand TSM variations over extensive areas and periods. This study proposes a remote-sensing approach to estimate the vertical distribution of TSM concentrations using MODIS satellite data, with the Bohai Sea and Yellow Sea (BSYS) as a case study. Extensive field measurements across various hydrological conditions and seasons enabled accurate reconstruction of in situ TSM vertical distributions from bio-optical parameters, including the attenuation coefficient, particle backscattering coefficient, particle size, and number concentration, achieving a determination coefficient of 0.90 and a mean absolute percentage error of 26.5%. In situ measurements revealed two distinct TSM vertical profile types (vertically uniform and increasing) and significant variation in TSM profiles in the BSYS. Using surface TSM concentrations, wind speed, and water depth, we developed and validated a remote-sensing approach to classify TSM vertical profile types, achieving an accuracy of 84.3%. Combining this classification with a layer-to-layer regression model, we successfully estimated TSM vertical profiles from MODIS observation. Long-term MODIS product analysis revealed significant spatiotemporal variations in TSM vertical distributions and column-integrated TSM concentrations, particularly in nearshore regions. These findings provide valuable insights for studying marine sedimentation and biological processes and offer a reference for the remote-sensing estimation of the TSM vertical distribution in other marine regions.
Keywords