Aerospace (Oct 2024)
A Novel Approach to Ripple Cancellation for Low-Speed Direct-Drive Servo in Aerospace Applications
Abstract
Low-frequency harmonic interference is an important factor that affects the performance of low-speed direct-drive servo systems. In order to improve the low-speed smoothness of direct-drive servo, firstly, the causes of the first and second harmonics of electromagnetic torque and tooth harmonics are analyzed based on the mathematical model of PMSM (permanent magnet synchronous motor) and the principle of vector control. Accordingly, the CC-EUMA (Electrical angle Update and Mechanical angle Assignment algorithm for Center Current) and SL-DQPR (Double Quasi-Proportional Resonant control algorithm for Speed Loop) algorithm are proposed. Second, to confirm the algorithm’s efficacy, the harmonic environment is simulated using Matlab/Simulink, and the built harmonic suppression module is simulated and analyzed. Then, a miniaturized, fully digital drive control system is built based on the architecture of the Zynq-7000 series chips. Finally, the proposed suppression algorithm is verified at the board level. According to the experimental results, the speed ripple decreases to roughly one-third of its initial value after the algorithm is included. This effectively delays the speed ripple’s low-speed deterioration and provides a new idea for the low-speed control of the space direct-drive servo system.
Keywords