Nano-Micro Letters (2020-08-01)

Sustained-Release Nanocapsules Enable Long-Lasting Stabilization of Li Anode for Practical Li-Metal Batteries

  • Qianqian Liu,
  • Yifei Xu,
  • Jianghao Wang,
  • Bo Zhao,
  • Zijian Li,
  • Hao Bin Wu

DOI
https://doi.org/10.1007/s40820-020-00514-1
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 12

Abstract

Read online

Abstract A robust solid-electrolyte interphase (SEI) enabled by electrolyte additive is a promising approach to stabilize Li anode and improve Li cycling efficiency. However, the self-sacrificial nature of SEI forming additives limits their capability to stabilize Li anode for long-term cycling. Herein, we demonstrate nanocapsules made from metal–organic frameworks for sustained release of LiNO3 as surface passivation additive in commercial carbonate-based electrolyte. The nanocapsules can offer over 10 times more LiNO3 than the solubility of LiNO3. Continuous supply of LiNO3 by nanocapsules forms a nitride-rich SEI layer on Li anode and persistently remedies SEI during prolonged cycling. As a result, lifespan of thin Li anode in 50 μm, which experiences drastic volume change and repeated SEI formation during cycling, has been notably improved. By pairing with an industry-level thick LiCoO2 cathode, practical Li-metal full cell demonstrates a remarkable capacity retention of 90% after 240 cycles, in contrast to fast capacity drop after 60 cycles in LiNO3 saturated electrolyte.

Keywords