Photonics (Jun 2025)
A Multi-Deformable-Mirror 500 Hz Adaptive Optical System for Atmospheric Turbulence Simulation, Real-Time Reconstruction, and Wavefront Correction Using Bimorph and Tip-Tilt Correctors
Abstract
Atmospheric turbulence introduces distortions to the wavefront of propagating optical radiation. It causes image resolution degradation in astronomical telescopes and significantly reduces the power density of radiation on the target in focusing applications. The impact of turbulence fluctuations on the wavefront can be investigated under laboratory conditions using either a fan heater (roughly tuned), a phase plate, or a deformable mirror (finely tuned) as a turbulence-generation device and a wavefront sensor as a wavefront-distortion measurement device. We designed and developed a software simulator and an experimental setup for the reconstruction of atmospheric turbulence-phase fluctuations as well as an adaptive optical system for the compensation of induced aberrations. Both systems use two 60 mm, 92-channel, bimorph deformable mirrors and two tip-tilt correctors. The wavefront is measured using a high-speed Shack–Hartmann wavefront sensor based on an industrial CMOS camera. The system was able to achieve a 500 Hz correction frame rate, and the amplitude of aberrations decreased from 2.6 μm to 0.3 μm during the correction procedure. The use of the tip-tilt corrector allowed a decrease in the focal spot centroid jitter range of 2–3 times from ±26.5 μm and ±24 μm up to ±11.5 μm and ±5.5 μm.
Keywords