Remote Sensing (Mar 2020)
Sample Generation with Self-Attention Generative Adversarial Adaptation Network (SaGAAN) for Hyperspectral Image Classification
Abstract
Hyperspectral image analysis plays an important role in agriculture, mineral industry, and for military purposes. However, it is quite challenging when classifying high-dimensional hyperspectral data with few labeled samples. Currently, generative adversarial networks (GANs) have been widely used for sample generation, but it is difficult to acquire high-quality samples with unwanted noises and uncontrolled divergences. To generate high-quality hyperspectral samples, a self-attention generative adversarial adaptation network (SaGAAN) is proposed in this work. It aims to increase the number and quality of training samples to avoid the impact of over-fitting. Compared to the traditional GANs, the proposed method has two contributions: (1) it includes a domain adaptation term to constrain generated samples to be more realistic to the original ones; and (2) it uses the self-attention mechanism to capture the long-range dependencies across the spectral bands and further improve the quality of generated samples. To demonstrate the effectiveness of the proposed SaGAAN, we tested it on two well-known hyperspectral datasets: Pavia University and Indian Pines. The experiment results illustrate that the proposed method can greatly improve the classification accuracy, even with a small number of initial labeled samples.
Keywords