Agriculture (Oct 2022)
Impacts of Biochar-Based Controlled-Release Nitrogen Fertilizers on Soil Prokaryotic and Fungal Communities
Abstract
Controlled-release Nitrogen Fertilizers (CRNFs) are an effective fertilization technique by minimizing nutrient loss and making Nitrogen (N) available to plants as they grow. Biochar-based CRNF (BCRNF) technologies have been demonstrated very promising in increase of corn yield. Despite the beneficial effects of BCRNFs, their impacts on prokaryotic and fungal soil communities are not well evaluated. Different formulations of BCRNF were developed to investigate their effects on corn productivity. We analyzed the soil microbes and their functional potential under different BCRNF regimes using amplified V3–V4 region of 16s rRNA for determining prokaryotic, and ITS genes for fungal communities. The soil prokaryotic diversity was similar across the treatments, with differences in prokaryotic genera with relative abundance of 0.1% or less in the soil (p Aspergillus. Genus level comparison showed that Pseudofabraea was higher in Bioasphalt-based BCRNF compared to other treatments. Moreover, the N-fixing communities in soil were also similar across the treatments. At genus level, Microvirga, Azospirillum, and Methyloprofundus were highest in no-fertilizer control. The functional potential predictions using PICRUSt2 portrayed a consistent N-cycling functions across the treatments. However, the predicted gene functions related to nitrous-oxide reductase (nosZ) and hydroxylamine reductase (hcp) were significantly lower in soil receiving BCRNF containing biosolid. Overall, BCRNF treatments previously identified to increase corn yield displayed minimal shifts in the soil microbial communities. Thus, such novel fertilization would enable increased crop yield without affecting soil communities leading to sustainable crop production.
Keywords