PLoS ONE (Jan 2012)

Division of labor in the hyperdiverse ant genus Pheidole is associated with distinct subcaste- and age-related patterns of worker brain organization.

  • Mario L Muscedere,
  • James F A Traniello

DOI
https://doi.org/10.1371/journal.pone.0031618
Journal volume & issue
Vol. 7, no. 2
p. e31618

Abstract

Read online

The evolutionary success of ants and other social insects is considered to be intrinsically linked to division of labor among workers. The role of the brains of individual ants in generating division of labor, however, is poorly understood, as is the degree to which interspecific variation in worker social phenotypes is underscored by functional neurobiological differentiation. Here we demonstrate that dimorphic minor and major workers of different ages from three ecotypical species of the hyperdiverse ant genus Pheidole have distinct patterns of neuropil size variation. Brain subregions involved in sensory input (optic and antennal lobes), sensory integration, learning and memory (mushroom bodies), and motor functions (central body and subesophageal ganglion) vary significantly in relative size, reflecting differential investment in neuropils that likely regulate subcaste- and age-correlated task performance. Worker groups differ in brain size and display patterns of altered isometric and allometric subregion scaling that affect brain architecture independently of brain size variation. In particular, mushroom body size was positively correlated with task plasticity in the context of both age- and subcaste-related polyethism, providing strong, novel support that greater investment in this neuropil increases behavioral flexibility. Our findings reveal striking levels of developmental plasticity and evolutionary flexibility in Pheidole worker neuroanatomy, supporting the hypothesis that mosaic alterations of brain composition contribute to adaptive colony structure and interspecific variation in social organization.