PLoS ONE (Jan 2017)
Identification of persistent benthic assemblages in areas with different temperature variability patterns through broad-scale mapping.
Abstract
Ecosystem-based management is a place-based approach that considers the relationships between system parts. Due to the complexity of ecosystems in the marine environment it is often difficult to define these relationships in space and time. Maps illustrate spatial concepts. Here we promote ecosystem-based spatial thinking by layering datasets from a larger project that mapped benthic fauna, substrate characteristics, and oceanic conditions on monthly, annual and decadal time scales along the U.S. continental shelf. By combining maps of persistent benthic megafauna and bottom temperature variability over approximately 90,000 km2, we identified wide spread benthic animal assemblages and regional disparity in temperature variability. From a broad-scale perspective the locations of the assemblage appear to be related to sea scallop population dynamics and indicate potential regional differences in climate change resiliency. These findings offer information on a scale that correlates with marine spatial planning, and could be used as a starting point for further investigation. To spur additional analysis and facilitate their linkage to other datasets, these datasets are available through public, online data portals. Overall, this study demonstrates how the growth of maps from single to multiple elements can help promote and facilitate the multifactor, ecosystem-based thinking needed to support regional ocean planning.