IEEE Access (Jan 2022)

A Non-Isolated High Step-Up DC-DC Converter Using Voltage Lift Technique: Analysis, Design, and Implementation

  • Alireza Rajabi,
  • Amirhossein Rajaei,
  • Vahid Moradzadeh Tehrani,
  • Payman Dehghanian,
  • Josep M. Guerrero,
  • Baseem Khan

DOI
https://doi.org/10.1109/ACCESS.2022.3141088
Journal volume & issue
Vol. 10
pp. 6338 – 6347

Abstract

Read online

This paper presents a new structure for non-isolated and non-inverting DC-DC converters with high voltage gain harnessing the fundamentals of the voltage lift technique. The proposed topology is a suitable structure for low voltage applications. The operation principles, the steady-state relations, and different switching strategies to further improve the voltage gain performance of the proposed converter are described. A hybrid utilization of complementary switching approach and simultaneous switching of two switches is proposed to achieve the highest voltage gain in different duty cycles. Furthermore, a theoretical analysis of power losses is provided. The suggested DC-DC converter architecture features high voltage gain, high efficiency, and low stress on semiconductor devices. In order to demonstrate these advantages, the structure is compared with some recently-presented high step-up converters in terms of efficiency, voltage gain, and voltage stress. Moreover, A 200W laboratory prototype is developed with experiments carried out to validate the given theories and feasibility of the proposed converter topology.

Keywords