Advanced Science (Aug 2023)

Macroscopic Quantum Tunneling of a Topological Ferromagnet

  • Kajetan M. Fijalkowski,
  • Nan Liu,
  • Pankaj Mandal,
  • Steffen Schreyeck,
  • Karl Brunner,
  • Charles Gould,
  • Laurens W. Molenkamp

DOI
https://doi.org/10.1002/advs.202303165
Journal volume & issue
Vol. 10, no. 22
pp. n/a – n/a

Abstract

Read online

Abstract The recent advent of topological states of matter spawned many significant discoveries. The quantum anomalous Hall (QAH) effect is a prime example due to its potential for applications in quantum metrology, as well as its influence on fundamental research into the underlying topological and magnetic states and into axion electrodynamics. Here, electronic transport studies on a (V,Bi,Sb)2Te3 ferromagnetic topological insulator nanostructure in the QAH regime are presented. This allows access to the dynamics of an individual ferromagnetic domain. The domain size is estimated to be in the 50–100 nm range. Telegraph noise resulting from the magnetization fluctuations of this domain is observed in the Hall signal. Careful analysis of the influence of temperature and external magnetic field on the domain switching statistics provides evidence for quantum tunneling (QT) of magnetization in a macrospin state. This ferromagnetic macrospin is not only the largest magnetic object in which QT is observed, but also the first observation of the effect in a topological state of matter.

Keywords