Materiales de Construccion (Sep 2016)

Formation and early hydration characteristics of C2.75B1.25A3$ in binary system of C2.75B1.25A3$-C2S

  • Shoude Wang,
  • Yongbo Huang,
  • Chenchen Gong,
  • Xinghua Fu,
  • Lingchao Lu

DOI
https://doi.org/10.3989/mc.2016.02915
Journal volume & issue
Vol. 66, no. 323
pp. e091 – e091

Abstract

Read online

C2.75B1.25A3$ (2.75CaO•1.25BaO• 3Al2O3• SO3) is one of the important minerals and it govern-directly the early-strength of belite-barium calcium sulphoaluminate cement. In this paper a binary system C2.75B1.25A3$-C2S is selected to investigate the formation of C2.75B1.25A3$. In the range of 1100 °C–1200 °C, the earlier formed C2S hinders the formation of C2.75B1.25A3$. On the contrary, when the temperature is in the range of 1200 °C–1350 °C, the initially formed C2S could provide a surface for the nucleation of C2.75B1.25A3$ and cut down the potential barrier (?Gk*) for the heterogeneous nucleation of C2.75B1.25A3$, which contributes to its formation. Moreover, at 1350 °C, the large amount of previously formed C2S benefits the extent of formation of C2.75B1.25A3$. The possible reason was that it could prevent sulfur evaporation. In early hydration age, AFm and AFt originating from C2.75B1.25A3$ hydration are found within 2 h and 12 h under 95% RH at 1 °C, respectively, whereas C2S is unhydrated at this moment.

Keywords