Meitan kexue jishu (Jun 2023)

Study on macromolecular structure of different types of contact metamorphic coals

  • Zhenyu SHU,
  • Xiang XU,
  • Yingchun WEI,
  • Anmin WANG,
  • Lu WANG,
  • Zhifei LIU,
  • Gaojian CHEN,
  • Daiyong CAO

DOI
https://doi.org/10.13199/j.cnki.cst.2021-1466
Journal volume & issue
Vol. 51, no. 6
pp. 147 – 157

Abstract

Read online

Contact metamorphism occurs when magma intrudes into the coal seam, resulting in changes to the microfraction, grade, chemical composition, physico-chemical structure and process properties of the coal. Different types of contact metamorphic products are formed under different tectonic-thermal conditions. In order to reveal the variability of different types of contact metamorphic coals and their controlling factors from the macromolecular structure scale, a comparative study of natural coke series samples from the Tashan mine in Datong, Shanxi Province and coal-based graphite series samples from the Lutang mine in Hunan Province was carried out using industrial analysis, elemental analysis, reflectance determination, X-ray diffraction (XRD) and Raman spectroscopy (Raman) test methods, and combined with geological background analysis. The results show that the small shallow-formed rocks have a short thermal action time, poor thermal confinement conditions, belong to high temperature and low pressure condition, narrow contact metamorphic zone, and develop natural coke - thermal transformation coal sequence; the series is in the carbonation stage, and the coal macromolecular structure is dominated by chemical changes, with aromatization and ring condensation dominating. It shows carbon enrichment, dehydrogenation, deoxygenation, reduction of defects in the active sites such as side chains and functional groups, growth of aromatic structural units leading to an increase in defects within the aromatic level, and the aromatic lamellae are not ordered. The acidic and moderately acidic deep-formed rock bodies such as strains and bases intruded in a regional extrusive tectonic setting are well heated, thermally confined and under high temperature and pressure conditions, and the contact metamorphic width can exceed 1km, developing graphite-semi-graphite-anthracite metamorphic sequences; the chemical composition of the coal-based graphite series is highly mature and less variable, and the macromolecular structure is dominated by physical changes, mainly occurring as collagenesis and rank physicochemical interactions. The non-oriented aromatic lamellae are spliced and stacked and rotated and oriented by forces, with a continuous reduction of defects and a transition to a three-dimensional ordered crystal structure.

Keywords