Applied Sciences (May 2022)

Formulas for Uniaxial Capacities of Tetrapod Bucket Foundations Considering Group Effects in Undrained Clay

  • Zhong Xiao,
  • Yan Wang,
  • Ying Liu,
  • Yinghui Tian,
  • Rong Wang,
  • Ran Tao,
  • Xian Wei

DOI
https://doi.org/10.3390/app12115353
Journal volume & issue
Vol. 12, no. 11
p. 5353

Abstract

Read online

Suction bucket foundation is a novel and cheaper foundation used in marine structures, such as offshore wind turbines, breakwater and oil platforms. Compared with a single bucket foundation, tetrapod bucket foundations can bear larger loads because of the group effects. However, the vertical, horizontal and moment capacity factors of tetrapod bucket foundations have not been presented in existing specifications. A series of three-dimensional finite-element analyses were conducted to investigate the group effects on uniaxial capacities and failure mechanisms of tetrapod bucket foundations in undrained clay considering various foundation separation distance ratios, embedment depth ratios, soil-strength heterogeneity indices and load direction angles. Generalized formulas for undrained uniaxial capacities of tetrapod bucket foundations were proposed in order to establish a bridge connecting the capacities of tetrapod bucket foundations and those of the single bucket foundation, which can provide a reference for industrial designs of capacities of tetrapod bucket foundations. The results show that the vertical group effect factor of tetrapod bucket foundations is basically not affected by the foundation separation distance ratio, embedment depth ratio, soil-strength heterogeneity index and load direction angle, which can adopted 0.9 based on a conservative estimation. The normalized horizontal and moment group effect factors of tetrapod bucket foundations are both affected by the separation distance ratio, embedment depth ratio and soil-strength heterogeneity index, but the moment group effect factor is also obviously affected by the load direction angle. The value of the horizontal and moment capacity factors of tetrapod bucket foundations are about 2.3 and 13.8 times that of a single bucket foundation, respectively, when the separation distance ratio is 3.5, embedment depth ratio is 1.0 and soil-strength heterogeneity index is 10, which have both been significantly enhanced. A value of 3.5 is suggested for the separation distance ratio to attain good capacities and a relatively high global stiffness for the tetrapod bucket foundations.

Keywords