Scientific Reports (Aug 2022)
Stable isotopes provide evidence that condensed tannins from sericea lespedeza are degraded by ruminal microbes
Abstract
Abstract The objective of Trial 1 was to determine the effects of condensed tannins (CT) from sericea lespedeza [SL; Lespedeza cuneata (Dum. Cours.) G. Don] on in vitro digestible organic matter (IVDOM), total gas production (GP), methane (CH4) emission, and ruminal fluid parameters after fermentation. Substrates used in four 48-h in vitro fermentations were 100% bermudagrass [(Cynodon dactylon (L.) Pers.] hay (0SL), 100% SL hay (100SL), and a mix of both hays (50SL). Linear reductions were observed for all parameters (P < 0.05) with the inclusion of SL, except for CH4 in relation to GP, that presented a quadratic effect (P = 0.005). In Trial 2, SL plants were enriched with 13C–CO2 to obtain pure enriched CT to identify the destination of fermentation end products of CT degradation. The enrichment of CT through the SL was successful (P < 0.001), and carbon originated from CT was detected in the fermentation end products [microbial mass, clarified rumen fluid, and in the CH4 produced (P < 0.001)]. Therefore, inclusion of SL was effective in reducing in vitro CH4 production and compound-specific tracing of δ13C abundance provided better quantitative understanding of the mechanisms of partitioning CT during ruminal fermentation processes.