Heliyon (Dec 2023)
Development of high-performance composite via innovative route using water hyacinth extracted nanocellulose and analysis of its physical properties
Abstract
This study focuses on the development of a high-performance composite using a novel technique incorporating nanocellulose extracted from water hyacinth. The extraction procedure of nanocellulose from water hyacinth stems involves acid hydrolysis and sonication, followed by its incorporation into jute, glass, and cotton fabric through the dip coating method. The crystallinity index of the nanocellulose was determined to be 40.72% using X-ray diffraction (XRD) analysis. Additionally, the functional groups of the extracted nanocellulose were identified through FT-IR analysis, while scanning electron microscopy (SEM) demonstrated morphological changes after nanocellulose coating. Our synthesized water hyacinth nanocellulose exhibited compliance with previously studied results in FT-IR analysis. Both tensile and flexural strength tests revealed that the nanocellulose coating significantly improved the strength of the jute, cotton, and glass fabric-reinforced composites compared to their raw counterparts. Specifically, the jute nanocomposite exhibited a 24.61% increase in strength, the cotton woven nanocomposite showed a 19.39% enhancement, and the glass nanocomposite displayed 8.47% increment in strength. Similarly, the flexural stress of jute and cotton fabric nanocomposites showed a notable 11% and 8.9% increase, surpassing the 3.59% rise observed in glass nanocomposites. Overall, this research successfully completed all tests and achieved superior findings compared to earlier studies.