Current Oncology (Oct 2023)

Application of Machine Learning in Predicting Hepatic Metastasis or Primary Site in Gastroenteropancreatic Neuroendocrine Tumors

  • Mahesh Kumar Padwal,
  • Sandip Basu,
  • Bhakti Basu

DOI
https://doi.org/10.3390/curroncol30100668
Journal volume & issue
Vol. 30, no. 10
pp. 9244 – 9261

Abstract

Read online

Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) account for 80% of gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs). GEP-NETs are well-differentiated tumors, highly heterogeneous in biology and origin, and are often diagnosed at the metastatic stage. Diagnosis is commonly through clinical symptoms, histopathology, and PET-CT imaging, while molecular markers for metastasis and the primary site are unknown. Here, we report the identification of multi-gene signatures for hepatic metastasis and primary sites through analyses on RNA-SEQ datasets of pancreatic and small intestinal NETs tissue samples. Relevant gene features, identified from the normalized RNA-SEQ data using the mRMRe algorithm, were used to develop seven Machine Learning models (LDA, RF, CART, k-NN, SVM, XGBOOST, GBM). Two multi-gene random forest (RF) models classified primary and metastatic samples with 100% accuracy in training and test cohorts and >90% accuracy in an independent validation cohort. Similarly, three multi-gene RF models identified the pancreas or small intestine as the primary site with 100% accuracy in training and test cohorts, and >95% accuracy in an independent cohort. Multi-label models for concurrent prediction of hepatic metastasis and primary site returned >98.42% and >87.42% accuracies on training and test cohorts, respectively. A robust molecular signature to predict liver metastasis or the primary site for GEP-NETs is reported for the first time and could complement the clinical management of GEP-NETs.

Keywords