HortScience (Feb 2021)
Genome Size and Karyotype Studies in Five Species of Lantana (Verbenaceae)
Abstract
Lantana species are an important component of the U.S. environmental horticulture industry. The most commonly produced and used species are L. camara and, on a smaller scale, L. montevidensis. Both were introduced to the United States from Central and/or South America. Lantana species native to the continental United States include L. canescens, L. depressa, L. involucrata, etc. and most of them have not been well exploited. This study was conducted to obtain information about somatic chromosome numbers, karyotypes, and genome size of these five species. Nuclear DNA content in these species ranged from 2.74 pg/2C (L. involucrata) to 6.29 pg/2C (L. depressa var. depressa). Four chromosome numbers were observed: 2n = 2x = 22 in L. camara ‘Lola’ and ‘Denholm White’, 2n = 4x = 44 in L. depressa var. depressa, 2n = 2x = 24 in L. canescens and L. involucrata, and 2n = 3x = 36 in L. montevidensis. Two basic chromosome numbers were observed: x = 11 in L. camara and L. depressa var. depressa, and x = 12 in L. canescens, L. involucrata, and L. montevidensis. Analysis of somatic metaphases resulted in formulas of 20m + 2sm for L. camara ‘Lola’ and ‘Denholm White’, 12m + 12sm for L. canescens, 44m for L. depressa var. depressa, 10m + 14sm for L. involucrata, and 32m + 4sm for L. montevidensis. Satellites were identified in all five species, but were associated with a different chromosome group in different species. L. depressa var. depressa had the longest total chromatin length (146.78 µm) with a range of 1.88 to 4.41 µm for individual chromosomes. The maximum arm ratio was observed in L. canescens, with a ratio of 2.5 in chromosome group 3. L. depressa var. depressa was the only species that had all of its centromeres located in the median region of the chromosome. The results show significant differences in nuclear DNA content, chromosome number, and karyotype among three native and two introduced lantana species and will help to identify, preserve, protect, and use native lantana species. The information will be helpful in assessing the ploidy levels in the genus by flow cytometry.
Keywords