Energies (Apr 2024)
The Energy Conversion and Coupling Technologies of Hybrid Wind–Wave Power Generation Systems: A Technological Review
Abstract
Based on the mutual compensation of offshore wind energy and wave energy, a hybrid wind–wave power generation system can provide a highly cost-effective solution to the increasing demands for offshore power. To provide comprehensive guidance for future research, this study reviews the energy conversion and coupling technologies of existing hybrid Wind–wave power generation systems which have not been reported in previous publications. The working principles of various wind and wave energy conversion technologies are summarised in detail. In addition, existing energy coupling technologies are specifically classified and described. All aforementioned technologies are comprehensively compared and discussed. Technological gaps are highlighted, and future development forecasts are proposed. It is found that the integration of hydraulic wind turbines and oscillating wave energy converters is the most promising choice for hybrid wind–wave power extraction. DC and hydraulic coupling are expected to become mainstream energy coupling schemes in the future. Currently, the main technological gaps include short their operating life, low energy production, limited economic viability, and the scarcity of theoretical research and experimental tests. The field offers significant opportunities for expansion and innovation.
Keywords