Kidney Research and Clinical Practice (Mar 2024)

Role of APE1/Ref-1 in hydrogen peroxide-induced apoptosis in human renal HK-2 cells

  • Ha Yeon Kim,
  • Jung Sun Park,
  • Byeong Hwa Jeon,
  • Hong Sang Choi,
  • Chang Seong Kim,
  • Seong Kwon Ma,
  • Soo Wan Kim,
  • Eun Hui Bae

DOI
https://doi.org/10.23876/j.krcp.22.171
Journal volume & issue
Vol. 43, no. 2
pp. 186 – 201

Abstract

Read online

Background Apurinic/apyrimidinic endonuclease 1/redox factor-1 (APE1/Ref-1) is a multipotent protein that plays essential roles in cellular responses to oxidative stress. Methods To examine the role of APE1/Ref-1 in ischemia-reperfusion (I/R) injuries and hydrogen peroxide (H2O2)-induced renal tubular apoptosis, we studied male C57BL6 mice and human proximal tubular epithelial (HK-2) cells treated with H2O2 at different concentrations. The colocalization of APE1/Ref-1 in the proximal tubule, distal tubule, thick ascending limb, and collecting duct was observed with confocal microscopy. The overexpression of APE1/Ref-1 with knockdown cell lines using an APE1/Ref-1–specific DNA or small interfering RNA (siRNA) was used for the apoptosis assay. The promotor activity of nuclear factor kappa B (NF-κB) was assessed and electrophoretic mobility shift assay was conducted. Results APE1/Ref-1 was predominantly localized to the renal tubule nucleus. In renal I/R injuries, the levels of APE1/Ref-1 protein were increased compared with those in kidneys subjected to sham operations. The overexpression of APE1/Ref-1 in HK-2 cells enhanced the Bax/Bcl-2 ratio as a marker of apoptosis. Conversely, the suppression of APE1/Ref-1 expression by siRNA in 1-mM H2O2-treated HK-2 cells decreased the Bax/Bcl-2 ratio, the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, p38, c-Jun N-terminal kinase (JNK) 1/2, and NF-κB. In HK-2 cells, the promoter activity of NF-κB increased following H2O2 exposure, and this effect was further enhanced by APE1/Ref-1 transfection. Conclusion The inhibition of APE1/Ref-1 with siRNA attenuated H2O2-induced apoptosis through the modulation of mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 and the nuclear activation of NF-κB and proapoptotic factors.

Keywords