Journal of Composites Science (Jan 2024)

Aluminum Nanocomposites Reinforced with Al<sub>2</sub>O<sub>3</sub> Nanoparticles: Synthesis, Structure, and Properties

  • Francisca Rocha,
  • Sónia Simões

DOI
https://doi.org/10.3390/jcs8010033
Journal volume & issue
Vol. 8, no. 1
p. 33

Abstract

Read online

This work comprehensively investigates the production and characterization of an innovative nanocomposite material and an aluminum matrix reinforced with Al2O3 nanoparticles. The powder metallurgy route was used to produce the nanocomposite, and subsequent microstructural and mechanical characterizations were conducted to evaluate its performance. The nanoparticles and metal powders were dispersed and mixed using ultrasonication, followed by cold pressing and sintering. The results indicated that dispersion using isopropanol made it possible to obtain nanocomposites efficiently through powder metallurgy with a high density and an 88% increase in hardness compared to the Al matrix. The process led to the production of nanocomposites with high densification if the volume fraction of the reinforcement did not exceed 1.0 wt.% of Al2O3. The volume fraction of the reinforcement plays an essential role in the microstructure and mechanical properties of the composite because as it increases to values above 1.0 wt.%, it becomes more difficult to disperse through ultrasonication, which results in less promising results. The addition of Al2O3 significantly affects the Al matrix’s microstructure, which influences the mechanical properties. However, this new approach is proving effective in producing Al matrix nanocomposites with high mechanical properties.

Keywords