Remote Sensing (Jun 2015)

Monitoring Spatial and Temporal Dynamics of Flood Regimes and Their Relation to Wetland Landscape Patterns in Dongting Lake from MODIS Time-Series Imagery

  • Yanxia Hu,
  • Jinliang Huang,
  • Yun Du,
  • Pengpeng Han,
  • Wei Huang

DOI
https://doi.org/10.3390/rs70607494
Journal volume & issue
Vol. 7, no. 6
pp. 7494 – 7520

Abstract

Read online

Dongting Lake, the second largest freshwater lake in China, is well known for its rapid seasonal fluctuations in inundation extents in the middle reach of the Yangtze River, and it is also the lake most affected by the Three Gorges Project. Significant inter-annual and seasonal variations in flood inundations were observed from Moderate Resolution Imaging Spectroradiometer (MODIS) time-series imagery between 2000 and 2012 in the Dongting Lake. Results demonstrated that temporal changes in inundation extents derived from MODIS data were accordant with variations in annual and monthly precipitation and runoff data. Spatial and temporal dynamics of some related parameters of flood regime were analyzed as well, which included flood inundation probability, duration and start/end date of the annual largest flood. Large areas with high flood inundation probability were identified in 2000 and 2002, but relatively small regions with great flood inundation probability occurred in 2001, 2006, and 2011. Long flood durations were observed in 2000, 2002, 2008, 2010, and 2012, whereas short flood durations occurred in 2001, 2006, and 2011. Correlation analysis techniques were applied to explore spatial-temporal relationships between parameters associated with flood regime and wetland landscape patterns from 2000 to 2012. In addition, this paper presented comprehensive discussions on development of related parameters of flood regime and their influences on wetland landscape pattern after impoundment of the Three Gorges Reservoir, changes in wetland landscape patterns after the flood period, and the role of flooding in wetland evolution and vegetation succession. These results can provide scientific guidance and baseline data for wetland management and long-term monitoring of wetland ecological environment in the Dongting Lake.

Keywords