Molecular Metabolism (Jul 2021)

CD81 marks immature and dedifferentiated pancreatic β-cells

  • Ciro Salinno,
  • Maren Büttner,
  • Perla Cota,
  • Sophie Tritschler,
  • Marta Tarquis-Medina,
  • Aimée Bastidas-Ponce,
  • Katharina Scheibner,
  • Ingo Burtscher,
  • Anika Böttcher,
  • Fabian J. Theis,
  • Mostafa Bakhti,
  • Heiko Lickert

Journal volume & issue
Vol. 49
p. 101188

Abstract

Read online

Objective: Islets of Langerhans contain heterogeneous populations of insulin-producing β-cells. Surface markers and respective antibodies for isolation, tracking, and analysis are urgently needed to study β-cell heterogeneity and explore the mechanisms to harness the regenerative potential of immature β-cells. Methods: We performed single-cell mRNA profiling of early postnatal mouse islets and re-analyzed several single-cell mRNA sequencing datasets from mouse and human pancreas and islets. We used mouse primary islets, iPSC-derived endocrine cells, Min6 insulinoma, and human EndoC-βH1 β-cell lines and performed FAC sorting, Western blotting, and imaging to support and complement the findings from the data analyses. Results: We found that all endocrine cell types expressed the cluster of differentiation 81 (CD81) during pancreas development, but the expression levels of this protein were gradually reduced in β-cells during postnatal maturation. Single-cell gene expression profiling and high-resolution imaging revealed an immature signature of β-cells expressing high levels of CD81 (CD81high) compared to a more mature population expressing no or low levels of this protein (CD81low/-). Analysis of β-cells from different diabetic mouse models and in vitro β-cell stress assays indicated an upregulation of CD81 expression levels in stressed and dedifferentiated β-cells. Similarly, CD81 was upregulated and marked stressed human β-cells in vitro. Conclusions: We identified CD81 as a novel surface marker that labels immature, stressed, and dedifferentiated β-cells in the adult mouse and human islets. This novel surface marker will allow us to better study β-cell heterogeneity in healthy subjects and diabetes progression.

Keywords