Dietary sodium sulphate supplementation during mid-to-late gestation improves placental angiogenesis, bile acid metabolism, and serum amino acid concentrations of sows
R. Zhou,
L. Zhe,
S.S. Lai,
H.M. Wen,
L. Hu,
X.L. Zhang,
Y. Zhuo,
S.Y. Xu,
Y. Lin,
B. Feng,
L.Q. Che,
D. Wu,
Z.F. Fang
Affiliations
R. Zhou
Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, People’s Republic of China
L. Zhe
Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, People’s Republic of China
S.S. Lai
Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, People’s Republic of China
H.M. Wen
Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, People’s Republic of China
L. Hu
Key Laboratory of Agricultural Product Processing and Nutrition Health, Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya’an 625014, People’s Republic of China
X.L. Zhang
Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, People’s Republic of China
Y. Zhuo
Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, People’s Republic of China
S.Y. Xu
Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, People’s Republic of China
Y. Lin
Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, People’s Republic of China
B. Feng
Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, People’s Republic of China
L.Q. Che
Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, People’s Republic of China
D. Wu
Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, People’s Republic of China
Z.F. Fang
Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu 611130, People’s Republic of China; Key Laboratory of Agricultural Product Processing and Nutrition Health, Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya’an 625014, People’s Republic of China; Corresponding author at: Present address: Huimin Road 211, Wenjiang, Chengdu 611130, PR China.
Sulphate plays a vital role in the growth and development of the foetus. Sodium sulphate (Na2SO4) is utilised as a dietary protein nutrient factor and helps replenish sulphur elements in livestock and poultry. Therefore, this study aimed to investigate the effects of Na2SO4 supplementation in mid to late pregnancy on bile acid metabolism, amino acid metabolism, placental vascular development and antioxidant capacity of sows. At day 1 of gestation (G1), a total of twenty-six primiparous sows were carefully chosen and randomised into two groups: (1) control group, (2) Na2SO4 group (1.40 g/kg). Blood samples and placentas from sows were collected to measure biochemistry parameters, antioxidant indexes, placental vascular density, and indicators related to bile acid metabolism and amino acid concentrations, respectively. We found that dietary supplementation with Na2SO4 had a tendency for a reduction of incidence of stillborn at farrowing. Further observation showed that sows supplemented with Na2SO4 had decreased total bile acid level in cord blood, and increased placental gene expression of sulphotransferase and organic anion transport peptide. Na2SO4 supplementation increased catalase and total superoxide dismutase activity in cord blood, decreased placental malondialdehyde content, and enhanced placental protein expression of Sirtuin 1. Moreover, Na2SO4 consumption resulted in increased vascular density of placental stroma and elevated amino acid levels in sows and cord blood. Furthermore, maternal Na2SO4 consumption reduced serum urea concentrations of sows and umbilical cord blood at G114. In addition, dietary supplementation with Na2SO4 activated the protein expression of the placental mechanistic target of rapamycin complex 1. Collectively, these findings indicated that maternal supplementation with Na2SO4 during mid-to-late gestation elevated foetal survival via improving placental angiogenesis, bile acid metabolism and amino acid utilisation.