IEEE Photonics Journal (Jan 2022)
Image Recognition Based on Compressive Imaging and Optimal Feature Selection
Abstract
The measurement matrix in compressive imaging controls the crucial feature information for high performance recognition. In this study, a deterministic orthogonal measurement matrix design method using the discrete cosine transform and a compressive feature selection scheme are proposed to implement high-end computational optics for imaging. The selection scheme systematically evaluates the recognition importance for the frequency features, combined with a scaling of the contribution of the various coefficients used to produce a base matrix for the new group of measuring patterns, which ensures the minimal recognition difference for each individual order of frequency filters and combining a relatively complex expression to quickly find the best quantization values. The model parameters are gradually adjusted and eventually converge to the best result through training with a large number of pre-determined samples from the dataset and backpropagating the feature selection loss along with the recognition loss, and the data processing capabilities can be enhanced because the measurement matrix is a priori information for the recognition phase. The systematic ability of the proposed technique was verified through simulations and experiments on two standard datasets: MNIST and CIFAR-10. The results show that the proposed method outperforms state-of-the-art methods in terms of both the model complexity and classification accuracy, which indicates that our study provides a new practical solution for compressive imaging recognition.
Keywords