Journal of Marine Science and Engineering (May 2023)

ENSO Impact on Summer Precipitation and Moisture Fluxes over the Mexican Altiplano

  • José P. Vega-Camarena,
  • Luis Brito-Castillo,
  • Luis F. Pineda-Martínez,
  • Luis M. Farfán

DOI
https://doi.org/10.3390/jmse11051083
Journal volume & issue
Vol. 11, no. 5
p. 1083

Abstract

Read online

In the warm season, El Niño/Southern Oscillation (ENSO) causes periods with more rain in Northern Mexico during its positive phase, while less rainfall is recorded in the southern regions during the negative phase. This research study evaluates the variability of summer (July–September) precipitation and moisture fluxes under different ENSO scenarios in the Mexican Altiplano and coast of the state of Nayarit. The catchment of Rio San Pedro-Mezquital (SPM-RB) connects both regions. Using the Oceanic Niño Index (ONI), the years that signal change from El Niño to La Niña (1998), neutral conditions (2005), and strong (moderate) La Niña (1999) were selected to get an insight of ENSO impact on summer precipitation. For anomalies in the Altiplano, two additional contrasting years were analyzed—2006 (mostly dry) and 2010 (wet)—to determine moisture sources. Summer rainfall conditions in 1998 and 1999 had an opposite behavior between coastal Nayarit (wet) and the Altiplano (dry), while in 2005, rainfall deficits were observed in both regions. The moisture fluxes showed large divergence areas over central Mexico and the Southeastern United States in years of intense drought (1998 and 1999) caused by two high-pressure cells at middle levels of the troposphere (500 hPa). The moisture transport mechanisms into the Altiplano were related to atmospheric circulation at the upper level (200 hPa). The variations of the moisture fluxes from 2006 to 2010 are less strong at middle levels. The Eastern Pacific moisture convergence along the western coast of Mexico favors above-average rainfall anomalies in the coastal region but below-average anomalies in the Altiplano.

Keywords