Drug Delivery (Jan 2018)

Delivery of magnetic micro/nanoparticles and magnetic-based drug/cargo into arterial flow for targeted therapy

  • Mohammad K. D. Manshadi,
  • Mahsa Saadat,
  • Mehdi Mohammadi,
  • Milad Shamsi,
  • Morteza Dejam,
  • Reza Kamali,
  • Amir Sanati-Nezhad

DOI
https://doi.org/10.1080/10717544.2018.1497106
Journal volume & issue
Vol. 25, no. 1
pp. 1963 – 1973

Abstract

Read online

Magnetic drug targeting (MDT) and magnetic-based drug/cargo delivery are emerging treatment methods which attracting the attention of many researchers for curing different cancers and artery diseases such as atherosclerosis. Herein, computational studies are accomplished by utilizing magnetic approaches for cancer and artery atherosclerosis drug delivery, including nanomagnetic drug delivery and magnetic-based drug/cargo delivery. For the first time, the four-layer structural model of the artery tissue and its porosity parameters are modeled in this study which enables the interaction of particles with the tissue walls in blood flow. The effects of parameters, including magnetic field strength (MFS), magnet size, particle size, the initial position of particles, and the relative magnetic permeability of particles, on the efficacy of MDT through the artery walls are characterized. The magnetic particle penetration into artery layers and fibrous cap (the covering layer over the inflamed part of the artery) is further simulated. The MDT in healthy and diseased arteries demonstrates that some of the particles stuck in these tissues due to the collision of particles or blood flow deviation in the vicinity of the inflamed part of the artery. Therefore the geometry of artery and porosity of its layers should be considered to show the real interaction of particles with the artery walls. Also, the results show that increasing the particles/drug/cargo size and MFS leads to more particles/drug/cargo retention within the tissue. The present work provides insights into the decisive factors in arterial MDT with an obvious impact on locoregional cancer treatment, tissue engineering, and regenerative medicine.

Keywords