PLoS ONE (Jan 2017)

Source attribution of human campylobacteriosis at the point of exposure by combining comparative exposure assessment and subtype comparison based on comparative genomic fingerprinting.

  • André Ravel,
  • Matt Hurst,
  • Nicoleta Petrica,
  • Julie David,
  • Steven K Mutschall,
  • Katarina Pintar,
  • Eduardo N Taboada,
  • Frank Pollari

DOI
https://doi.org/10.1371/journal.pone.0183790
Journal volume & issue
Vol. 12, no. 8
p. e0183790

Abstract

Read online

Human campylobacteriosis is a common zoonosis with a significant burden in many countries. Its prevention is difficult because humans can be exposed to Campylobacter through various exposures: foodborne, waterborne or by contact with animals. This study aimed at attributing campylobacteriosis to sources at the point of exposure. It combined comparative exposure assessment and microbial subtype comparison with subtypes defined by comparative genomic fingerprinting (CGF). It used isolates from clinical cases and from eight potential exposure sources (chicken, cattle and pig manure, retail chicken, beef, pork and turkey meat, and surface water) collected within a single sentinel site of an integrated surveillance system for enteric pathogens in Canada. Overall, 1518 non-human isolates and 250 isolates from domestically-acquired human cases were subtyped and their subtype profiles analyzed for source attribution using two attribution models modified to include exposure. Exposure values were obtained from a concurrent comparative exposure assessment study undertaken in the same area. Based on CGF profiles, attribution was possible for 198 (79%) human cases. Both models provide comparable figures: chicken meat was the most important source (65-69% of attributable cases) whereas exposure to cattle (manure) ranked second (14-19% of attributable cases), the other sources being minor (including beef meat). In comparison with other attributions conducted at the point of production, the study highlights the fact that Campylobacter transmission from cattle to humans is rarely meat borne, calling for a closer look at local transmission from cattle to prevent campylobacteriosis, in addition to increasing safety along the chicken supply chain.