Journal of Science: Advanced Materials and Devices (Sep 2024)

Gas phase alloyed crystalline S–Se dielectrics with high ionic mobility

  • Pradyumna Kumar Chand,
  • Radha Raman,
  • Zhi-Long Yen,
  • Ian Daniell Santos,
  • Wei-Ssu Liao,
  • Ya-Ping Hsieh,
  • Mario Hofmann

Journal volume & issue
Vol. 9, no. 3
p. 100763

Abstract

Read online

The advancement of future electronic devices necessitates dielectric materials with enhanced compositional complexity and improved capabilities. We here demonstrate a gas-phase alloying approach that yields ultrathin and crystalline dielectrics with attractive properties for the integration into electronics. A surface-selective deposition process was shown to produce sulfur (S) and selenium (Se) alloys with large-scale uniformity. Through combination of experimental diffraction analysis and materials modeling, we establish the crystallinity of the alloy with a modified lattice structure compared to the host materials. The resulting lattice arrangement endows the alloy dielectric with high ionic mobility as validated by electrochemical impedance spectroscopy. Leveraging this innovative feature, we fabricate memristive devices exhibiting promising performance characteristics. Our findings demonstrate the feasibility of utilizing gas-phase alloying to engineer dielectrics with superior properties and functionality for future device integration.

Keywords