PLoS ONE (Jan 2024)
Transient plasma membrane disruption induced calcium waves in mouse and human corneal epithelial cells.
Abstract
The purpose of this study was to examine transient plasma membrane disruptions (TPMDs) and TPMD-induced Ca++ waves (TPMD Ca++ Wvs) in human and mouse corneal epithelium (HCEC and MCEC). A multi-photon microscope was used to create laser-induced TPMDs in single cultured cells and in intact ex vivo and in vivo MCECs and ex vivo human cornea rim HCECs. Eye rubbing-induced TPMDs were studied by gentle rubbing with a cotton tipped applicator over a closed eyelid in ex vivo and in vivo MCECs. Ca++ sources for TPMD-induced Ca++ waves were explored using Ca++ channel inhibitors and Ca++-free media. TPMDs and TPMD Ca++ Wvs were observed in all cornea epithelial models examined, often times showing oscillating Ca++ levels. The sarcoplasmic reticulum Ca++ ATPase inhibitors thapsigargin and CPA reduced TPMD Ca++ Wvs. TRP V1 antagonists reduced TPMD Ca++ Wvs in MCECs but not HCECs. Ca++-free medium, 18α-GA (gap junction inhibitor), apyrase (hydrolyzes ATP), and AMTB (TRPM8 inhibitor) did not affect TPMD Ca++ Wvs. These results provide a direct demonstration of corneal epithelial cell TPMDs and TPMDs in in vivo cells from a live animal. TPMDs were observed following gentle eye rubbing, a routine corneal epithelial cell mechanical stress, indicating TPMDs and TPMD Ca++ Wvs are common features in corneal epithelial cells that likely play a role in corneal homeostasis and possibly pathophysiological conditions. Intracellular Ca++ stores are the primary Ca++ source for corneal epithelial cell TPMD Ca++ Wvs, with TRPV1 Ca++ channels providing Ca++ in MCECs but not HCECs. Corneal epithelial cell TPMD Ca++ Wv propagation is not influenced by gap junctions or ATP.