Energy Exploration & Exploitation (Jan 2021)

Carbon emissions factor evaluation for assembled building during prefabricated component transportation phase

  • Haining Wang,
  • Hong Zhang,
  • Keming Hou,
  • Gang Yao

DOI
https://doi.org/10.1177/0144598720973371
Journal volume & issue
Vol. 39

Abstract

Read online

This study focuses on the calculation of carbon emissions during prefabricated component transportation phase, figuring out how to accurately infer the carbon emissions factor according to the changing of external factors. Through tracking and analyzing the differences between prefabricated component transportation phase and ordinary building material transportation phase, this paper explores how to establish a calculation mathematical model of carbon emissions factor to reflect the real prefabricated component transportation phase, that work would critically lower the bias of component transportation carbon emissions factors between in real world and giving in relevant national standards. The research content involved in this paper provides quantitative scale for Architecture Engineering and Construction (AEC), and also helps to establish and popularize carbon sink system of Architecture Engineering and Construction (AEC). In this study, prefabricated component, the basic component of assembled building, is taken as the research object and clue. The real carbon emissions performances of transport vehicles loaded with different number of components are simulated, and the carbon emissions factor and related parameter groups of transport vehicles are measured experimentally. Based on the statistical method, the data parameter selection and regression analysis are carried out by using STATA® 12. The relationship between the three parameters of Load Ratio, Average Speed and Atmospheric Temperature on carbon emissions factor are obtained except the types of vehicles. It is found that there is a linear relationship between the carbon emissions factor and the −0.5 power of the Load Ratio, the square of the Atmospheric Temperature and the reciprocal of the Average Speed, and the R 2 value of the fitting formula reaches 90.46%. The result has a good interpretation for the measured data, better reflect the real situation of carbon emissions for assembled building during prefabricated component transportation phase, and improve the accuracy of carbon emissions calculation in this phase. If the Load Ratio and Average Speed can be increased, and the transportation time of prefabricated component at lower temperature can be selected, the carbon emissions can be significantly reduced, that could exert positive influence to the environment.