Zernovì Produkti ì Kombìkorma (Dec 2021)

ATTEMPT TO IMPROVE THE OPERATING AND TECHNOLOGICAL PROPERTIES OF THE COMBINED GRAIN WASHING MACHINE

  • L. Soldatenko,
  • A. Shipko,
  • I. Shipko

DOI
https://doi.org/10.15673/gpmf.v21i2.2183
Journal volume & issue
Vol. 21, no. 2

Abstract

Read online

Washing machines are used in the production lines of grain cleaning departments of flour mills for thorough cleaning of the grain surface, in particular, its grooves from the remnants of organic and mineral dust, microorganisms and mold. In addition, the grain mass during washing is cleaned of hydrodynamically light and heavy impurities - chaff, seeds of waste plants, straw fragments, mineral particles in the form of sand, small stones, lumps of earth, as well as spores and wormwood seeds. At the same time, foreign odors of grain disappear. Experience in the operation of Ж9-БМА machines shows that along with many advantages, they have some disadvantages. In particular, the productivity of the machine 10 t / h does not correspond to the productivity of the conjugated technological equipment of the production line, and the specific water consumption for washing grain is 1.8… 2.0 l / kg, which is too much in modern conditions of acute shortage of drinking water. Enterprises to abandon the use of washing machines. In addition, certain problems and inconveniences are caused by the design of the sieve shell of the impression column. Stamped sieves with scaly asymmetric holes have a low coefficient of living cross section, which complicates the process of dehydration of washed grain, quickly corrode and rub, require special attention during installation or replacement. Therefore, an attempt is made to eliminate these shortcomings. In particular, the reduction of water consumption is achieved due to the elimination of the grain hydraulic conveyor during its transfer from the washing bath to the pressure column. For this purpose, a device for mechanical overloading of grain by a rotary bucket device located within the alloy chamber is used. At the same time, attention was paid to the separation of light organic impurities from the grain. This decision needs further explanation. The functional diagram shows that the initial grain mixture enters the receiving device, which feeds it with a minimum vertical speed into the ascending water streams created by the screws of two grain augers rotating with the same frequency in the opposite direction. The augers pick up the grain and, keeping it afloat in a suspended state, mix it with the water of the washing bath. At the same time the grain is washed and particles are separated from it, which differ from it in terms of density: mineral impurities begin to sink, fall down and through the longitudinal slit in the auger trough fall into the area of the auger for mineral impurities. This auger transports the "stones" in the opposite direction to the funnel with the ejector of the hydrotransporter of mineral particles. Light impurities, during the transportation of grain by grain augers, float to the surface of the water, the level of which in the washing bath is maintained up to the axis of the augers. Together with grain and water, these impurities are pushed out of the bath into the alloy chamber. In the chamber, in the transverse direction, a pipe with a longitudinal absorption slot is installed, the lower edge of which is immersed in water so that the upper layer of water merges into this slot together with light impurities that have surfaced in the washing bath. The amount of water that fuses light impurities can be adjusted by the depth of immersion in water of the lower edge of the absorption hole. To do this, the pipe is rotated relative to its axis with a special handle with a clamp and a pointing scale. One end of the pipe is closed by a plug, and the other passes through a hole in the wall and drains the water with light impurities into the sink sump. The described device provides almost complete removal of light impurities and minimal consumption of floating water. This solution is in the invention according to the copyright certificate 701708404, developed by specialists of the department TOZV. In addition, certain problems and inconveniences are caused by the design of the sieve shell of the squeezing column. Dirt particles tend to stick to the outer surface of the sieve cylinder and block its holes. This can slow down and even stop the separation of water by centrifugation. Therefore, the upper outer surface of the cylinder is washed with water, which in automatic mode is periodically fed to the sieve by the control device and the solenoid valve. It also saves water.

Keywords