Communications Materials (Mar 2024)

Local tuning of Rydberg exciton energies in nanofabricated Cu2O pillars

  • Anindya Sundar Paul,
  • Sai Kiran Rajendran,
  • David Ziemkiewicz,
  • Thomas Volz,
  • Hamid Ohadi

DOI
https://doi.org/10.1038/s43246-024-00481-9
Journal volume & issue
Vol. 5, no. 1
pp. 1 – 8

Abstract

Read online

Abstract Rydberg excitons in Cu2O feature giant optical nonlinearities. To exploit these nonlinearities for quantum applications, the confinement must match the Rydberg blockade size, which in Cu2O could be as large as a few microns. Here, in a top-down approach, we show how exciton confinement can be realised by focused-ion-beam etching of a polished bulk Cu2O crystal without noticeable degradation of the excitonic properties. The etching of the crystal to micron sizes allows for tuning the energies of Rydberg excitons locally, and precisely, by optically induced temperature change. These results pave the way for exploiting the large nonlinearities of Rydberg excitons in micropillars for making non-classical light sources, while the precise tuning of their emission energy opens up a viable pathway for realising a scalable photonic quantum simulation platform.